A Probabilistic Model for Dirty Multi-task Feature Selection

نویسندگان

  • Daniel Hernández-Lobato
  • José Miguel Hernández-Lobato
  • Zoubin Ghahramani
چکیده

Multi-task feature selection methods often make the hypothesis that learning tasks share relevant and irrelevant features. However, this hypothesis may be too restrictive in practice. For example, there may be a few tasks with specific relevant and irrelevant features (outlier tasks). Similarly, a few of the features may be relevant for only some of the tasks (outlier features). To account for this, we propose a model for multi-task feature selection based on a robust prior distribution that introduces a set of binary latent variables to identify outlier tasks and outlier features. Expectation propagation can be used for efficient approximate inference under the proposed prior. Several experiments show that a model based on the new robust prior provides better predictive performance than other benchmark methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Multi-Task Feature Selection

Recently, some variants of the l1 norm, particularly matrix norms such as the l1,2 and l1,∞ norms, have been widely used in multi-task learning, compressed sensing and other related areas to enforce sparsity via joint regularization. In this paper, we unify the l1,2 and l1,∞ norms by considering a family of l1,q norms for 1 < q ≤ ∞ and study the problem of determining the most appropriate spars...

متن کامل

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Learning Feature Selection Dependencies in Multi-task Learning

A probabilistic model based on the horseshoe prior is proposed for learning dependencies in the process of identifying relevant features for prediction. Exact inference is intractable in this model. However, expectation propagation offers an approximate alternative. Because the process of estimating feature selection dependencies may suffer from over-fitting in the model proposed, additional da...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015